15 research outputs found

    A Taxonomy for Attack Patterns on Information Flows in Component-Based Operating Systems

    Full text link
    We present a taxonomy and an algebra for attack patterns on component-based operating systems. In a multilevel security scenario, where isolation of partitions containing data at different security classifications is the primary security goal and security breaches are mainly defined as undesired disclosure or modification of classified data, strict control of information flows is the ultimate goal. In order to prevent undesired information flows, we provide a classification of information flow types in a component-based operating system and, by this, possible patterns to attack the system. The systematic consideration of informations flows reveals a specific type of operating system covert channel, the covert physical channel, which connects two former isolated partitions by emitting physical signals into the computer's environment and receiving them at another interface.Comment: 9 page

    Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity

    Get PDF
    Strains of the Gram-negative bacterium Vibrio coralliilyticus cause the bleaching of corals due to decomposition of symbiotic microalgae. The V. coralliilyticus strain ATCC BAA-450 (Vc450) encodes a type III secretion system (T3SS). The gene cluster also encodes a protein (locus tag VIC_001052) with sequence homology to the T3SS-secreted nodulation proteins NopE1 and NopE2 of Bradyrhizobium japonicum (USDA110). VIC_001052 has been shown to undergo auto-cleavage in the presence of Ca2+ similar to the NopE proteins. We have studied the hitherto unknown secondary structure, Ca2+-binding affinity and stoichiometry of the "metal ion-inducible autocleavage" (MIIA) domain of VIC_001052 which does not possess a classical Ca2+-binding motif. CD and fluorescence spectroscopy revealed that the MIIA domain is largely intrinsically disordered. Binding of Ca2+ and other di- and trivalent cations induced secondary structure and hydrophobic packing after partial neutralization of the highly negatively charged MIIA domain. Mass spectrometry and isothermal titration calorimetry showed two Ca2+-binding sites which promote structure formation with a total binding enthalpy of -110 kJ mol(-1) at a low micromolar K-d. Putative binding motifs were identified by sequence similarity to EF-hand domains and their structure analyzed by molecular dynamics simulations. The stoichiometric Ca2+-dependent induction of structure correlated with catalytic activity and may provide a "host-sensing" mechanism that is shared among pathogens that use a T3SS for efficient secretion of disordered proteins

    On Covert Acoustical Mesh Networks in Air

    No full text
    Abstract—Covert channels can be used to circumvent system and network policies by establishing communications that have not been considered in the design of the computing system. We construct a covert channel between different computing systems that utilizes audio modulation/demodulation to exchange data between the computing systems over the air medium. The underlying network stack is based on a communication system that was originally designed for robust underwater communication. We adapt the communication system to implement covert and stealthy communications by utilizing the near ultrasonic frequency range. We further demonstrate how the scenario of covert acoustical communication over the air medium can be extended to multi-hop communications and even to wireless mesh networks. A covert acoustical mesh network can be conceived as a botnet or malnet that is accessible via near-field audio communications. Different applications of covert acoustical mesh networks are presented, including the use for remote keylogging over multiple hops. It is shown that the concept of a covert acoustical mesh network renders many conventional security concepts useless, as acoustical communications are usually not considered. Finally, countermeasures against covert acoustical mesh networks are discussed, including the use of lowpass filtering in computing systems and a host-based intrusion detection system for analyzing audio input and output in order to detect any irregularities. Index Terms—malware, network covert channels, wireless mesh networks, ultrasonic communication I

    On Covert Acoustical Mesh Networks in Air

    No full text

    Develop, Then Intensify

    No full text
    absen

    Brain tissues have single-voxel signatures in multi-spectral MRI

    No full text
    Since the seminal works by Brodmann and contemporaries, it is well-known that different brain regions exhibit unique cytoarchitectonic and myeloarchitectonic features. Transferring the approach of classifying brain tissues – and other tissues – based on their intrinsic features to the realm of magnetic resonance (MR) is a longstanding endeavor. In the 1990s, atlas-based segmentation replaced earlier multi-spectral classification approaches because of the large overlap between the class distributions. Here, we explored the feasibility of performing global brain classification based on intrinsic MR features, and used several technological advances: ultra-high field MRI, q-space trajectory diffusion imaging revealing voxel-intrinsic diffusion properties, chemical exchange saturation transfer and semi-solid magnetization transfer imaging as a marker of myelination and neurochemistry, and current neural network architectures to analyze the data. In particular, we used the raw image data as well to increase the number of input features. We found that a global brain classification of roughly 97 brain regions was feasible with gross classification accuracy of 60%; and that mapping from voxel-intrinsic MR data to the brain region to which the data belongs is possible. This indicates the presence of unique MR signals of different brain regions, similar to their cytoarchitectonic and myeloarchitectonic fingerprints
    corecore